

A-level

Mathematics

MFP2 – Further Pure 2 Mark scheme

6360 June 2016

Version: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aga.org.uk

Key to mark scheme abbreviations

M	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
Α	mark is dependent on M or m marks and is for accuracy
В	mark is independent of M or m marks and is for method and accuracy
Е	mark is for explanation
√or ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
–x EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
С	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

	Mark	Total	Comment
$f(r) - f(r+1) = \frac{1}{4r-1} - \frac{1}{4(r+1)-1}$ $= \frac{4}{(4r-1)(4r+3)}$	M1 A1	2	or $\frac{1}{4r-1} - \frac{1}{4r+3}$
$\frac{1}{3} - \frac{1}{7} + \frac{1}{7} - \frac{1}{11} + \dots \mathbf{OE}$ or $f(1) - f(2) + f(2) - f(3) + \dots$	M1		Clear attempt to use method of differences possibly with one error PI by first A1
$\sum_{r=1}^{50} [f(r) - f(r+1)] = f(1) - f(51)$			
$=\frac{1}{3}-\frac{1}{203}$	A1		
$\sum_{r=1}^{50} \frac{1}{(4r-1)(4r+3)} = \frac{1}{4} \left(\frac{1}{3} - \frac{1}{203} \right)$	m1		"their" $\frac{1}{4}$ × "their" $\left(\frac{1}{3} - \frac{1}{203}\right)$
$=\frac{50}{609}$	A1	4	
Total		6	
Allow recovery for full marks in part (b) ever	en if error	s seen in	part (a)
	$= \frac{4}{(4r-1)(4r+3)}$ $\frac{1}{3} - \frac{1}{7} + \frac{1}{7} - \frac{1}{11} + \dots \text{ OE}$ $\text{ or } f(1) - f(2) + f(2) - f(3) + \dots$ $\sum_{r=1}^{50} \left[f(r) - f(r+1) \right] = f(1) - f(51)$ $= \frac{1}{3} - \frac{1}{203}$ $= \frac{1}{4} \left(\frac{1}{3} - \frac{1}{203} \right)$ $= \frac{50}{609}$ Total	$= \frac{4}{(4r-1)(4r+3)}$ $= \frac{4}{(4r-1)(4r+3)}$ $\frac{1}{3} - \frac{1}{7} + \frac{1}{7} - \frac{1}{11} + \dots \text{ OE}$ $\text{ or } f(1) - f(2) + f(2) - f(3) + \dots$ $\sum_{r=1}^{50} \left[f(r) - f(r+1) \right] = f(1) - f(51)$ $= \frac{1}{3} - \frac{1}{203}$ $= \frac{1}{3} - \frac{1}{203}$ $= \frac{1}{4} \left(\frac{1}{3} - \frac{1}{203} \right)$ $= \frac{50}{609}$ A1 Total	$= \frac{4}{(4r-1)(4r+3)}$ $= \frac{4}{(4r-1)(4r+3)}$ A1 $\frac{1}{3} - \frac{1}{7} + \frac{1}{7} - \frac{1}{11} + \dots \text{ OE}$ or $f(1) - f(2) + f(2) - f(3) + \dots$ $\sum_{r=1}^{50} \left[f(r) - f(r+1) \right] = f(1) - f(51)$ $= \frac{1}{3} - \frac{1}{203}$ A1 $\sum_{r=1}^{50} \frac{1}{(4r-1)(4r+3)} = \frac{1}{4} \left(\frac{1}{3} - \frac{1}{203} \right)$ $= \frac{50}{609}$ A1 4

Q2	Solution	Mark	Total	Comment
(a)(i)	1 – 2i	B1	1	
	$(\alpha\beta=1+4=)$ 5	B1	1	
(b)	$(\alpha\beta = 1 + 4 =) 5$ $\sum \alpha\beta = \frac{17}{3}$ $\alpha\gamma + \beta\gamma + "their"5 = "their" \frac{17}{3}$	B1 M1		PI by next line FT "their" $\alpha\beta$ and $\sum \alpha\beta$ values
	$\Rightarrow \gamma = \frac{1}{3}$	A1	3	Alternative $z^{3} + \frac{p}{3}z^{2} + \frac{17}{3}z + \frac{q}{3}$ quadratic factor $z^{2} - 2z + 5$ B1 $(z^{2} - 2z + 5)(z - \gamma) \text{ comparing}$ coefficient of z : $5 + 2\gamma = \frac{17}{3}$ M1 $\Rightarrow \gamma = \frac{1}{3} \text{ A1 (3)}$
(c)	$\alpha + \beta + \gamma = \frac{-p}{3} , \alpha \beta \gamma = \frac{-q}{3}$ $p = -7$ $q = -5$	M1 A1 A1	3	Either of these expressions correct PI by correct p or q Alternative comparing coefficients either $-5\gamma = \frac{q}{3}$ or $-\gamma - 2 = \frac{p}{3}$ M1 $p = -7$ A1; $q = -5$ A1 (3)
	Total		8	

- **(b)** Allow **M1** for $5 + 2\gamma = -\frac{17}{3}$ if $\sum \alpha \beta$ not seen
- (c) Example: $\alpha + \beta + \gamma = -p$; $\alpha + \beta + \gamma = 2 + \frac{1}{3} = \frac{7}{3}$ $\Rightarrow p = -7$ Award M1 A1 assuming first statement was meant as candidate's "reminder" for signs but "wiggly underline" incorrect statement Example: $\gamma = \frac{4}{3}$ $\alpha + \beta + \gamma = \frac{10}{3}$; $\Rightarrow p = -10$ Award M1 (implied) A0

Alternative: substituting z = 1+2i or 1-2i leading to correct simultaneous equations 3p-q+16=0 4p+28=0 **M1** then p=-7 **A1**; q=-5 **A1**

Q3	Solution	Mark	Total	Comment	
(a)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2x}{(1-x^2)}$	В1			
	$1 + \left(\frac{dy}{dx}\right)^2 = 1 + \frac{(2x)^2}{(1-x^2)^2}$	M1		FT their $\frac{dy}{dx}$	
	$\frac{1-2x^2+x^4+4x^2}{(1-x^2)^2} = \frac{(1+x^2)^2}{(1-x^2)^2}$	m1		Allow m1 if sign error in $\frac{dy}{dx}$	
	$s = \int \sqrt{1 + \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2} \mathrm{d}x$ $s = \int_0^{\frac{3}{4}} \left(\frac{1 + x^2}{1 - x^2}\right) \mathrm{d}x$	Alasa	4	AC must have do and limits on final line	
	$3 - J_0 \left(1 - x^2\right)^{4x}$	A1cso	4	\mathbf{AG} must have $\mathrm{d}x$ and limits on final line	
(b)	$\frac{1+x^2}{1-x^2} = \frac{A}{1-x^2} + B$ $1+x^2 = 2$	M1		and attempt to find constants $B \neq 0$	
	$\frac{1+x^2}{1-x^2} = \frac{2}{1-x^2} - 1$ $\left(\frac{A}{2}\ln\left(\frac{1+x}{1-x}\right) \text{ or } A \tanh^{-1} x\right) + Bx$	A1 m1		FT integral of their $\frac{A}{1-x^2} + B$	
	$ \ln\left(\frac{1+x}{1-x}\right) - x $	A1		or $2 \tanh^{-1} x - x$ correct	
	$ \ln\left(\frac{1+\frac{3}{4}}{1-\frac{3}{4}}\right) - \frac{3}{4} \mathbf{OE} $	A1		PI by next A1 or $(s =) 2 \tanh^{-1} \left(\frac{3}{4}\right) - \frac{3}{4}$	
	$-\frac{3}{4} + \ln 7$ Alternative	A1	6	or $(s) = \ln 7 - \frac{3}{4}$	
	$\frac{1+x^2}{1-x^2} = \frac{C}{1+x} + \frac{D}{1-x} + E$	(M1)		and attempt to find constants $E \neq 0$	
	$\frac{1+x^2}{1-x^2} = \frac{1}{1+x} + \frac{1}{1-x} - 1$	(A1)			
	$C\ln(1+x) - D\ln(1-x) + Ex$	(m1)		FT integral of their $\frac{C}{1+x} + \frac{D}{1-x} + E$	
	$= \ln(1+x) - \ln(1-x) - x$	(A1)		correct $1+x$ $1-x$	
	$(s =) \ln \frac{7}{4} - \ln \frac{1}{4} - \frac{3}{4} \mathbf{OE}$	(A1)		correct unsimplified	
	$(s) = \ln 7 - \frac{3}{4}$	(A1)	(6)		
	Total		10		
(a)	Condone omission of brackets in final line or poor use of brackets if recovered for A1cso				

- (a) Condone omission of brackets in final line or poor use of brackets if recovered for A1cso
- **(b)** If **M1** is not earned, award **SC B1** for sight of $\int \frac{1}{1-x^2} dx = \frac{1}{2} \ln \left(\frac{1+x}{1-x} \right)$ or $\tanh^{-1} x$ or **SC B1** for sight of $\int \frac{p}{1+x} + \frac{q}{1-x} dx = p \ln(1+x) - q \ln(1-x)$

Q4	Solution	Mark	Total	Comment
(a)	$\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right) = \frac{1}{1 + \left(\sqrt{3x}\right)^2}$	M1		$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{1+3x}$
	$\times \frac{1}{2} \times \sqrt{3} \ x^{-\frac{1}{2}} \mathbf{OE}$	A1	2	may have $\frac{3}{\sqrt{3}}$ instead of $\sqrt{3}$
				For guidance $\frac{dy}{dx} = \frac{\sqrt{3}}{2(1+3x)\sqrt{x}}$
(b)	$\left(\int = \right) k \tan^{-1} \sqrt{3x}$	M1		
	$\left(\int =\right) k \tan^{-1} \sqrt{3x}$ $\left(\int =\right) \frac{2}{\sqrt{3}} \tan^{-1} \sqrt{3x}$	A1		
	$k\left(\frac{\pi}{3} - \frac{\pi}{4}\right)$	m1		or $k \frac{\pi}{12}$ PI by correct answer
	$=\frac{\sqrt{3}\pi}{18}$	A1	4	
	Total		6	

- (a) Alternative 1 $\sec^2 y \frac{dy}{dx} = k x^{-\frac{1}{2}}$ M1 leading to correct $\frac{dy}{dx}$ in terms of x A1

 Alternative 2 $x = A \tan^2 y \Rightarrow \frac{dx}{dy} = k \sec^2 y \tan y$ M1 leading to correct $\frac{dy}{dx}$ in terms of x A1
- (b) If a substitution such as $u = \sqrt{x}$ is used giving $\int \frac{2}{1+3u^2} du$ then M1 is still only earned for $k \tan^{-1} \sqrt{3} u$ and A1 for $\frac{2}{\sqrt{3}} \tan^{-1} \sqrt{3} u$ and m1 A1 as above

Q5	Solution	Mark	Total	Comment
(a)	$\left(-4\sqrt{3}\right)^2 + 4^2 \left(=48 + 16\right)$	M1		PI by correct answer
	(Modulus =) 8	A1	2	
(b)(i)	circle	M1		condone freehand circle
	centre at $-4\sqrt{3} + 4i$	A1		\wedge
	circle touching negative real axis and not meeting imaginary axis	A1	3	<u>-4√3</u> →
(ii)	Right angled triangle hyp = 8 & radius = 4 & $\alpha = \frac{\pi}{6}$ as in diagram	M1		4 0
	$\arg w = \frac{2\pi}{3}$	A1	2	May consider the triangle with one side on real axis but only earns M1 when angle doubled to $\frac{\pi}{3}$ must be exact but allow $\frac{4\pi}{6}$ etc
(c)	$r = (8)^{\frac{1}{3}} (=2)$ $\arg(-4\sqrt{3} + 4i) = \frac{5\pi}{6}$	B1F B1		$r = (\text{modulus from } (\mathbf{a}))^{\frac{1}{3}}$
	Use of de Moivre "their" arg/3 $\theta = \frac{5\pi}{18}, \frac{17\pi}{18}, \frac{-7\pi}{18}$	M1 A1		3 correct values of $\theta \mod 2\pi$
	Roots are $2e^{i\frac{5\pi}{18}}$, $2e^{i\frac{17\pi}{18}}$, $2e^{i\left(\frac{-7\pi}{18}\right)}$	A1	5	eg third angle $\frac{29\pi}{18}$ must be in exactly this form for final mark final root may be written as $2e^{-i\frac{7\pi}{18}}$ etc
	Total		12	

- (a) NMS (Modulus =) 8 earns M1(implied) A1
- (b)(i) The two A1 marks are independent; first A1 PI by $-4\sqrt{3}$ marked on Re(z) axis & 4 marked on Im(z) axis; condone centre stated as $(-4\sqrt{3}, 4)$ for first A1 but withhold first A1 if point of contact labelled as anything other than $-4\sqrt{3}$

second $\mathbf{A1}$ is awarded if clear intention to touch the negative real axis but radius = 4 need not be marked

- (ii) Condone $\arg w \dots \frac{2\pi}{3}$.
- (c) Example: r = 2; $\theta = \frac{2k\pi}{3} + \frac{5\pi}{18}$ k = 0, 1, -1 scores **B1F, B1, M1, A1, A0**

Q6	Solution	Mark	Total	Comment	
(a)	$y = \frac{1}{2} \left(e^x - e^{-x} \right)$ $\Rightarrow e^{2x} - 2ye^x - 1 (=0)$ $\left(e^x = \right) \frac{2y \pm \sqrt{4y^2 + 4}}{2}$ $e^x > 0 \text{so reject negative root}$ $e^x = y + \sqrt{y^2 + 1} \Rightarrow x = \ln\left(y + \sqrt{y^2 + 1}\right)$	M1 A1 E1 A1	4	allow $e^{2x} - 2ye^x = 1$ for M1 if attempting to complete square terms all on one side or $e^x - y = \pm \sqrt{y^2 + 1}$ after completing square any correct explanation for rejection AG must earn previous A1	
(b)(i)	$\frac{dy}{dx} = 6 \times 2 \cosh x \sinh x$ $+ 5 \cosh x$ $\cosh x = 0 \text{gives no solution}$ (only stationary point when) $\sinh x = -\frac{5}{12}$	B1 B1 E1 M1		directly or via $3\cosh 2x + 3$ Not simply cancelling $\cosh x$ FT "their" $\sinh x$ from equation of form	
	$x = \ln\left(-\frac{5}{12} + \sqrt{1 + \frac{25}{144}}\right)$ $= \ln\left(\frac{2}{3}\right)$	A1	5	A cosh x sinh x + B cosh x or M1 for using exponentials obtaining $e^x = \frac{2}{3}$ or $-\frac{3}{2}$ OE accept $\ln\left(\frac{8}{12}\right)$ OE	
(ii)	$Area = \int_0^{\cosh^{-1} 2} \left(6\cosh^2 x + 5\sinh x \right) dx$ $6\cosh^2 x = 3 + 3\cosh 2x$	B1		or $6\cosh^2 x = \frac{3}{2} (e^{2x} + 2 + e^{-2x})$	
	$Ax+B\sinh 2x$ or $Cx+D(e^{2x}-e^{-2x})$	M1		correct FT "their" $\int 6\cosh^2 x dx$	
	$3x + \frac{3}{2}\sinh 2x + 5\cosh x$	A1		integration all correct (may be in e^x form)	
	$3\cosh^{-1} 2 + \frac{3}{2}\sinh(2\cosh^{-1} 2) + 10 - 5$ $(Area =)3\cosh^{-1} 2 + 6\sqrt{3} + 5$	m1 A1	5	$F(\cosh^{-1} 2) - F(0)$ correct substitution of limits into their expression	
	Total		14		
(a)	May find $\ln\left(y \pm \sqrt{y^2 + 1}\right)$ and reason about not having negative $\ln \text{ for } \mathbf{E1}$ Alternative: $y = \sinh x \Rightarrow 1 + y^2 = \cosh^2 x$ M1; Rejecting minus sign since $\cosh x > 0$ E1 $\cosh x = \sqrt{1 + y^2}$; $y + \sqrt{1 + y^2} = \frac{1}{2} \left(e^x - e^{-x} + e^x + e^{-x} \right) = e^x$ A1 $\Rightarrow x = \ln\left(y + \sqrt{y^2 + 1}\right)$ A1				
(b)(i)	If using double angle formula incorrectly, eg $6\cosh^2 x = 3\cosh 2x - 3 \Rightarrow \frac{dy}{dx} = 6\sinh 2x = 12\sinh x \cosh x$ then award B0 for this term but allow final A1 although FIW , since this will be penalised heavily in part				
(ii)	(b)(ii) May use $\cosh^{-1} 2 = \ln(2 + \sqrt{3})$ when finding	g F(cosh	¹ 2) and r	m1 may be implied by correct final answer	

Q7	Solution	Mark	Total	Comment
	n=1: LHS =1+ p ; RHS =1+ $pTherefore result is true when n=1Assume inequality is true for n=k (*)$	B1		
	Multiply both sides by $1+p$ $(1+p)^{k+1}(1+kp)(1+p)$ Inequality only valid since multiplication by positive number because $1+p0$	E 1		and stating $1+p \dots 0$ before multiplying both sides by $1+p$ or justifying why inequality remains \dots
	Considering $(1+kp)(1+p)$ RHS = $1+kp+p+kp^2$	M1 A1		and attempt to multiply out
	RHS1 + $kp + p$ $\Rightarrow (1+p)^{k+1}1 + (k+1)p$	A1		must have correct algebra and inequalities throughout
	Hence inequality is true when $n = k+1$ (**) but true for $n = 1$ so true for $n = 2, 3,$ by induction (***) (or true for all integers $n 1$ (***))	E 1	6	must have (*), (**) and (***) and must have earned previous B1, M1, A1, A1 marks
	Total		6	
	Statement "true for $n = 1$ may appear in conclusion such as "true for $n \dots 1$ " allowing B1 to be earned May write $(1+p)^{k+1} = (1+p)^k (1+p) \dots (1+kp)(1+p)$ with justification for for first E1 May earn final E1 even if first E1 has not been earned, provided other 4 marks are scored. If <i>final</i> statement is "true for all $n \dots 1$ " do not award final E1			

Q8	Solution	Mark	Total	Comment
		70.4		
(a)	$(\cos\theta + i\sin\theta)^4 = \cos 4\theta + i\sin 4\theta$	B 1		
	$\left(\cos\theta - i\sin\theta\right)^4 = \cos 4\theta - i\sin 4\theta$			
	$(c+is)^4 + (c-is)^4 = 2\cos 4\theta$	M1		
	Divide throughout by $\cos^4 \theta$			
	$(1+i\tan\theta)^4 + (1-i\tan\theta)^4 = \frac{2\cos 4\theta}{\cos^4 \theta}$	A1cso	3	AG – must see both sides equated
	$\cos \theta$			penalise poor notation/brackets for A1cso
(1)	π			π
(b)	$\theta = \frac{\pi}{8} \Rightarrow \cos 4\theta = 0$			$\mathbf{or} \cos 4\theta = 0 \Rightarrow \theta = \frac{\pi}{8}$
	$\Rightarrow z = i \tan \frac{\pi}{8}$ is root or satisfies equation	T24		AG be convinced: must have statement
	U	E 1		must mention itan $\frac{\pi}{8}$ but may be listed
	$((1+z)^4 + (1-z)^4 = 0)$			with other 3 roots
	other roots are $i \tan \frac{3\pi}{9}$, $i \tan \frac{5\pi}{9}$, $i \tan \frac{7\pi}{9}$,	B1	2	
	8 , 1 8 , 1 8 , 1			
(c)(i)	$\alpha R \sqrt{8} = i \tan \frac{\pi}{3} i \tan \frac{3\pi}{100} = 5\pi i \cos \frac{7\pi}{300}$	M1		product of their 4 roots
(0)(1)	$\alpha\beta\gamma\delta = i\tan\frac{\pi}{8}i\tan\frac{3\pi}{8}i\tan\frac{5\pi}{8}i\tan\frac{7\pi}{8}$	1411		
	$\tan \frac{5\pi}{8} = -\tan \frac{3\pi}{8}$ and $\tan \frac{7\pi}{8} = -\tan \frac{\pi}{8}$	B1		May earn this mark in part (c)(ii) if not earned here
	$(1+z)^4 + (1-z)^4 = 2z^4 + 12z^2 + 2$	B1		or $z^4 + 6z^2 + 1$ (= 0) seen
	$\alpha\beta\gamma\delta = 1 \implies \tan^2\frac{\pi}{8}\tan^2\frac{3\pi}{8} = 1$	A1cso	4	
	8 8	111000	4	must see i ⁴ become 1 for final A1 cso
(ii)	$\left(\sum \alpha\right)^2 = \sum \alpha^2 + 2\sum \alpha \beta$	M1		
	$\sum \alpha = 0 \Rightarrow \sum \alpha^2 = -2\sum \alpha \beta = -12$	A1		using $z^4 + 6z^2 + 1 = 0$
	$i^{2} \left(\tan^{2} \frac{\pi}{8} + \tan^{2} \frac{3\pi}{8} + \tan^{2} \frac{5\pi}{8} + \tan^{2} \frac{7\pi}{8} \right) = -12$	A1		$\tan^2 \frac{\pi}{8} + \tan^2 \frac{3\pi}{8} + \tan^2 \frac{5\pi}{8} + \tan^2 \frac{7\pi}{8} = 12$ OE
	$\tan^2 \frac{\pi}{8} + \tan^2 \frac{3\pi}{8} = 6$	A1cso	4	
	8 8 8	111650	4	must see i ² become –1 for final A1 cso
	Total		13	
(a)	May also earn M1 for both $(1 + i \tan \theta)^4 = \frac{(c)^4}{2}$	$\cos\theta + i\sin\theta$	$(\theta)^4$ or	$\frac{\cos 4\theta + i\sin 4\theta}{\cos \theta}$ and
	$(1-i\tan\theta)^4 = \frac{(\cos\theta - i\sin\theta)^4}{\cos^4\theta}$ or $\frac{\cos 4\theta - i\sin 4\theta}{\cos^4\theta}$ and A1 for completing the proof			
	Provided de Moivre's theorem is used, awar	rd M1 for	showing a	either $\frac{2\cos 4\theta}{\cos^2 \theta} = 2 - 12\tan^2 \theta + 2\tan^4 \theta$ or
1-1	$(1+i\tan\theta)^4 + (1-i\tan\theta)^4 = 2-12\tan^2\theta + 2\tan^4\theta$ and A1 for completing the proof			
(c) (i)	Must use equations in z and roots of form $i \tan \phi$ to earn marks in part (c) Condone omission of all 4 i's for M1 but withhold A1cso unless $i^4=1$ is seen			
(1)	Condone offission of all 41 8 for ivil but wi	umolu Al	cso ames	55 1 -1 15 50011
	see next page for alternative solution whe		ates answ	er part (c) holistically by converting the
	quartic equation into a quadratic equatio			

Q8	Alternative Solution	Mark	Total	Comment
(c)	Alternative part (c) Substitute $y = z^2$	M1		
	$(1+z)^4 + (1-z)^4 = 0$ becomes $(2)(y^2 + 6y + 1) = 0$	A1		
	$\tan\frac{5\pi}{8} = -\tan\frac{3\pi}{8} \text{ and } \tan\frac{7\pi}{8} = -\tan\frac{\pi}{8}$	B1		
	Roots are $-\tan^2 \frac{\pi}{8}$ and $-\tan^2 \frac{3\pi}{8}$	E 1		explicitly stated and evidence that $i^2 = -1$ has been used
	Sum of roots is -6	m1		FT their quadratic
	$\tan^2\frac{\pi}{8} + \tan^2\frac{3\pi}{8} = 6$	A1 cso		must have earned E1
	Product of roots is 1	m1		
	$\tan^2\frac{\pi}{8}\tan^2\frac{3\pi}{8} = 1$	A1 cso	8	must have earned E1
	Mark holistically out of 8 and then allocated part (c)(ii)	e marks by	giving u	up to 4 marks in (c)(i) and the remainder in